IR Spectra for Carbohydrates

Table 1: Comparisons between both experimental and BLYP calculated Infrared frequencies in cm-1 for both α- D-Glucose and β-D-Fructose as well as α- D-Glucose and β-D-Fructose monohydrates.

D-Glucose D-Fructose
IR α-D β-D-M Assignment IR α-D β-D-M Assignment
3410 3418 3146 ν OH 3393 3428 3513 ν OH
3393 3408 3123 ν OH 2933 2975 2957 νs CH of C2
2944 2963 3099 νs CH of C2 2899 2923 2925 νas CH of C1
2913 2939 3085 νas CH of C1 1637 1634 1665 δOH
1460 1441 1465 δCH2 + δOH + δCCH 1402 1392 1417 δOCH + δ COH + δ CCH
1382 1352 1390 δOCH + δ COH + δ CCH 1340 1330 1338 Δ CCH + δ OCH
1340 1330 1320 δ CCH + δ OCH 1265 1276 1292 δCH + δOH in plane, δ CCO
1244 1218 1278 δCH + δOH in plane 1203 1220 1232 δCH + δOH in plane
1149 1137 1205 ν CO + ν CC 1149 1148 1166 ν CO + νCC + δ CCO
1111 1116 1162 ν CO 1057 1082 1059 νCO
1050 1088 1082 ν CO + ν CC 977 990 990 νCO + δCCO
995 944 1032 ν CO + ν CC 873 856 908 δCH + νCC + δCCH
915 900 993 ν CO + ν CCH + νas ring of pyranose 818 816 884 δCCO + δCCH
837 834 909 δCH 780 784 828 δCCO + δ CCH
622 619 694 δ CCO + δ CCH CH2 648 624 658 CH2 + CH

NOMENCLATURE:

IR: Experimental frequencies
α-D: α -D-anomer
β-DM: β -D-anomer monohydrate

NOTE:

Reference: Ibrahim, M. A., Allam, M., El-Haes, H., Jalbout, A. F., & De Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Ecletica Quimica, 31(3), 15–21. DOI: https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21

Table 2: FTIR Spectra of Lauric Acid, Dextran, and Dextran-g-Lauric Acid.

Peak (cm⁻¹) Functional Group Lauric Acid Unmodified Dextran Dextran (Mw 6k, 24h) Dextran (Mw 6k, 48h) Dextran (Mw 40k, 24h)
3365 –OH Stretching
2931 –CH Stretching
2851 –CH Stretching
1721 C=O Stretching
1700 C=O Stretching
1648 C=O Stretching

NOMENCLATURE:

✓: Peaks are present and identified
–: Absent
Mw: Molecular weight

NOTE:

Reference: Su, C.-M., Lin, C., Huang, C.-Y., Yeh, J.-C., Tsai, T.-Y., Ger, T. R., Wang, M.-C., & Lou, S.-L. (2017). Dextran-g-lauric acid as IKK complex inhibitor carrier. RSC Advances, 7(89), 56247–56255. DOI: https://doi.org/10.1039/c7ra04544a

Table 3: Relocation of Key Maize Starch FTIR Bands After Treatment with Aqueous Na Silicate Solutions.

Native Starch (cm⁻¹) Starch at Water/Na Silicate Ratio 80 mL/g (cm⁻¹) 70 mL/g (cm⁻¹) 60 mL/g (cm⁻¹) 50 mL/g (cm⁻¹)
524 520 520 514
578 578 578 570 558
738 700 700 700
784 765 765 750
880 880 874 854
944 941 929 900 900
1000 996, 1017 (Split) 996, 1017 (Split) 996, 1017 (Split) 1000
1090 1090 1078 1078 1052
1180 1175 1150 1150 1121
1380 1380 1376 1347
1450 1450 1429 1381
1478 1476 1460 1423 1448
1649 1644 1642 1626 1626
2948 2935 2918 2918 2824 and 2918
3430 3400 3432 3432 3430

NOMENCLATURE:

NOTE:

Reference: Rashid, I., Omari, M. H. A., Leharne, S. A., Chowdhry, B. Z., & Badwan, A. (2012). Starch gelatinization using sodium silicate: FTIR, DSC, XRPD, and NMR studies. Starch - Stärke, 64(9), 713–728. Portico. DOI: https://doi.org/10.1002/star.201100190

Table 4: FTIR Spectra of Pullulan: Characteristic Absorption Bands and Functional Group Assignments

Wavenumber (cm⁻¹) Vibration Mode Functional Group/Assignment
3400–3200 O–H stretching Hydroxyl groups (OH)
2920–2850 C–H stretching Aliphatic C–H bonds
1640–1630 O–H bending (adsorbed water) Water absorbed in the sample
1450–1400 C–H bending CH₂ and CH₃ groups
1370–1350 C–H bending CH₃ groups
1150–1100 C–O–C stretching Glycosidic linkage (C–O–C)
1070–1030 C–O stretching C–O bonds in the sugar ring
1040, 1020, 996 Glycosidic linkage vibrations Specific to pullulan structure
930–910 C–O–C stretching Glycosidic linkage (C–O–C)
850–840 C–H bending Anomeric C–H deformation

NOMENCLATURE:

NOTE:

Reference:
1. Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate Research, 337(16), 1445–1451. DOI: https://doi.org/10.1016/s0008-6215(02)00209-4
2. Firsov, S. P., Zhbankov, R. G., Petrov, P. T., Shingel, K. I., & Tsarenkov, V. M. (1999). Analysis of dextran and pullulan molecular fraction structure by the method of IR-spectroscopy. Spectroscopy of Biological Molecules: New Directions, 323–324. DOI: hhttps://doi.org/10.1007/978-94-011-4479-7_144

Table 5: Characteristic IR Bands of Cellulose, sodium carboxymethylcellulose (CMC), carboxymethylcellulose acetate(CMCA), and carboxymethylcellulose acetate butyrate (CMCAB)

Material Wavenumber (cm⁻¹) Assignment Relative Absorbance
Cellulose 3482.81 Strong hydrogen-bonded O-H stretching vibration 3.59
2897.52 C-H stretching 1.74
1645.95 O-H bending from absorbed water 1
1428.99 CH₂ bending of pyranose ring 2.12
1370.18 C-H bending 2.56
1034.62 C-O-C pyranose ring vibration 2.42
898.66 β-glycosidic linkage between glucose units in cellulose 1.08
CMC 3445.21 O-H stretching 1.31
2901.38 Stretching vibration of methine (C-H) 3.37
1599.66 C=O group 1
1414.53 Anti-symmetric and symmetric stretching vibration peak of COO 0.99
1369.21 C-H bending 0.99
1060.66 C-O-C stretching 1.21
CMCA 3447.13 Unsubstituted O-H group 0.68
2911.02 COOH of acetyl group and methyl –CH₃ of CMCA 1.36
1743.33, 1639.2 Asymmetric and symmetric C=O coupled stretching 1.98, 1
1379.82, 1434.38 Symmetric and asymmetric vibrations of CH₃ 1.79, 1.65
1434.38 CH₂ band 1.65
1245.79, 1037.52, 904.45 Asymmetric stretching vibrations of C-O-C in ester 2.03, 2.52, 1.02
CMCAB 3531.99 Unsubstituted O-H group 1.1
2966.95 COOH dimer group and methyl –CH₃ of CMCAB 0.43
2884.99 Methylene –CH₂ of CMCAB 0.03
1748.16, 1640.16 Asymmetric and symmetric C=O coupled stretching 2.23, 1
1375 C-CH₃ of acetyl 1.22
1240.97, 1168.65, 1064.51 Asymmetric vibrations of C-O-C to prove the existence of an ester 1.66, 1.96, 2.36

NOMENCLATURE: CMC: Sodium carboxymethylcellulose
CMCA: Carboxymethylcellulose acetate
CMCAB: Carboxymethylcellulose acetate butyrate

NOTE:

Reference:
El-Sakhawy, M.A., Kamel, S., Salama, A., & Tohamy, H.S. (2018). PREPARATION AND INFRARED STUDY OF CELLULOSE BASED AMPHIPHILIC MATERIALS. DOI: http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2018)/p.193-200.pdf