IR Spectra for Carbohydrates

Table: IR Spectra of Sucrose, Glucose, and Fructose.

Material Wavenumber (cm⁻¹) Assignment Annotations Ref
2-deoxy-D-ribose 1011 νas (COC) ν (CC) ν (CO) β (CCH) IR R4
2-deoxy-D-ribose 1017 νas (COC) ν (CC) ν (CO) β (CCH) RS R4
2-deoxy-D-ribose 1041 νas (COC) ν (CC) ν (CO) β (CCH) IR R4
2-deoxy-D-ribose 1044 νas (COC) ν (CC) ν (CO) β (CCH) RS R4
2-deoxy-D-ribose 1082 νas (COC) ν (CC) ν (CO) β (CCH) RS R4
2-deoxy-D-ribose 1086 νas (COC) ν (CC) ν (CO) β (CCH) IR R4
2-deoxy-D-ribose 1111 νas (COC) ν (CC) ν (CO) β (CCH) IR R4
2-deoxy-D-ribose 1115 νas (COC) ν (CC) ν (CO) β (CCH) RS R4
2-deoxy-D-ribose 1147 ν (CO) ν (CC) β (COH) IR R4
2-deoxy-D-ribose 1148 ν (CO) ν (CC) β (COH) RS R4
2-deoxy-D-ribose 1196 ν (CO) ν (CC) RS R4
2-deoxy-D-ribose 1234 τ (CH2) IR R4
2-deoxy-D-ribose 1235 τ (CH2) RS R4
2-deoxy-D-ribose 1256 τ (CH2) IR R4
2-deoxy-D-ribose 1257 τ (CH2) RS R4
2-deoxy-D-ribose 1277 τ (CH2) IR R4
2-deoxy-D-ribose 1279 τ (CH2) RS R4
2-deoxy-D-ribose 1298 τ (CH2) RS R4
2-deoxy-D-ribose 1300 τ (CH2) IR R4
2-deoxy-D-ribose 1343 ω (CH2) IR R4
2-deoxy-D-ribose 1348 ω (CH2) RS R4
2-deoxy-D-ribose 1379 ω (CH2) RS R4
2-deoxy-D-ribose 1387 ω (CH2) IR R4
2-deoxy-D-ribose 1412 None IR R4
2-deoxy-D-ribose 1443 δ (CH2) RS R4

NOMENCLATURE:

IR: Experimental IR frequencies
Note: The water bands are identified by H2O; the other bands are those of sucrose.
Abbreviations: fru, D-fructosyl moiety; glu, D-glucosyl moiety; δ, deformation; ν, stretch; τ, torsion; ω, wag; endo, endocyclic; exo, exocyclic; s, strong; d, double; m, medium; sh, shoulder; w, weak. Annotations: The following symbols are used: S, strong; M, medium; W, weak; Sh, shoulder; Br, broad; V, very; d, doublet

References:

R1: Kodad H., Mokhlisse R., Davin E., Mille G. Etude IRTF Par Reflexion Totale Attenuee (ATR) De Sucres en Solution Aqueuse. Can. J. Appl. Spectrosc. 1994;39:107–112.

R2: Max, J.-J., & Chapados, C. (2001). Sucrose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 105(47), 10681–10688. DOI: https://doi.org/10.1021/jp012809j

R3: Max, J.-J., & Chapados, C. (2007). Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 111(14), 2679–2689. DOI: https://doi.org/10.1021/jp066882r

R4: Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., Kaczor, A., Baranska, M., & Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317–335. DOI: https://doi.org/10.1016/j.saa.2017.05.045


Table: Group-Frequency IR Spectra Data (Carbohydrate Functional Groups)

ID Wavenumber (cm-1) Group Annotations (Intensity) Types of Vibration Assignments (Remarks)
14505-4200C—Hwstr.aliphatic (combination)
24255-4000C—Hwstr.aromatic (combination)
33650-3500O—Hvarstr.free OH oxime
43640-3623O—Hm(sharp)str.free OH alcohols
53600-3100O—Hmstr.water of crystallization
63590-3425O—Hvar(sharp)str.intramolec. bonded OH
73550-3500O—Hmstr.free OH carboxylic acid (v. dil. soln.)
83550-3450O—Hvar(sharp)str.intermolec. bonded OH (dimeric)
93550-3165C=Owstr.carbonyl (first overtone)
10~3520N—Hsstr.primary amide (free)
11~3500N—Hmstr. (asym.)primary amine free NH (dil. soln.)
123500-3300N—Hmstr.secondary amine free NH
133500-3060N—Hmstr.associated NH amine or amide
14~3400N—Hsstr.primary amide (free)
15~3400N—Hmstr. (sym.)primary amine free NH (dil. soln.)
163400-3225O—Hs(broad)str.intermolec. bonded OH (polymeric)
17~3380NH3+mstr.amine salt (soln.)
183355-3145NH3+mstr.amine salt (solid) several bands
19~3350N—Hmstr.primary amide (bonded)
20~3300C—Hsstr.≡C—H acetylenes
213300-2500O—Hw(v broad)str.H-bonded carboxylic acid dimers
22~3280NH3+mstr.amine salt (soln.)
23~3175N—Hmstr.primary amide (bonded)
243155-3050C—Hwstr.—CH=CH—O— and —CH=C—O—
253095-3075C—Hmstr.RCH=CH2 olefin
263075-3030C—Hw-mstr.C—H of aromatic ring
273050-2995C—Hwstr.C—H of aromatic ring of epoxide (shifts to 3040-3030 if ring strain increases)
283040-3010C—Hss m>CH2;RCH=CH2; RCH=CHR' (cis or trans); RCR'=CHR'; olefin
29~2960C—Hsstr. (asym.)C-methyl
30~2925C—Hsstr. (asym.)>CH2 methylene Ar—CH3
312900-2880C—Hwstr.C—H methine
322900-2705C—Hwstr.—C(=O)H aldehyde (two)
332900-2300N—Hwstr.quaternary amine salt bonded (several)
34~2875C—Hsstr. (sym.)C-methyl
35~2850C—Hsstr. (sym.)>CH2 methylene
362835-2815C—Hsstr.O-methyl
37~2825C—Hmstr.—CH—(OCH2—)2 alkyl acetal
38~2780C—Hw(broad)str.—O—CH2—O— phosphoric ester H-bonded
392705-2300NH2+ NH+sstr.(may be several bands)
40~2680S—Hwstr.thiol free
41~2400S—Hwstr.thiol H-bonded
42~2270C≡Nvsasym. str.isocyanate
432260-2210C≡Cwstr.RC≡CR'
442234-2215C≡Nvarstr.unsatd. conj. nitrile
452200-2050C≡Svsasym. str.—N—C≡S isothiocyanate (2 or more bands)
462200-2000scyanide thiocyanate cyanate
472180-2120C≡Nstr.R—N≡C
482160-2120N≡Nsstr.azide
492140-2100C≡Cwstr.RC≡C—H
50~1810C=Osstr.—COCl aliphatic acid chloride
511780-1740C=Osstr.—O—(C=O)—O— carbonate
52~1770C=Osstr.γ-lactone
531745-1735C=Osstr.satd. esters
54~1740C=Osstr.δ-lactone
55~1727C=Osstr.—C(=O)H aldehyde
561725-1705C=Osstr.ketone
57~1720C=Osstr.benzoic ester
581720-1700C=Osstr.—COOH
591700-1670C=Osstr.—CONHR secondary amide free (dil. soln.): Amide I
601690-1670C=Osstr.—CONH2 primary amide free (dil. soln.): Amide I
611680-1630C=Osstr.secondary amide (solid)
621680-1620C=Cvarstr.nonconjugated C=C
63~1678C=Ctrans olefin
64~1675C=Ssstr.thioester
65~1675C=Osstr.thioester
66~1670C=Nwstr.aliphatic oxime
671670-1620C=Osstr.primary amide (solid) H-bonded 2 bands: Amide I
681662-1652C=Ccis olefin
691658-1648C=Cterminal olefin
701650-1620N—Hsdef.primary amide (solid): Amide II
711650-1600NO2sasym. str.—O—NO2 nitrate
721650-1588N—Hm-sdef.NH2
731650-1550N—Hwdef.NHR
741648-1638C=Cterminal olefin
75~1625C=Csstr.Ph-conjugated C=C
761625-1585C=Cmskeletal in-planearomatic C=C
771620-1500N—Hsdef.primary amide (dil. soln.)
781620-1560NH2+m-sdef.
791610-1540C—Ovsasym. str.—COO- carboxylate
80~1600C=Csstr.CO or C=C conjugated with C=C
81~1585NH3+masym. def.amine salt
821580-1520C=N (plus C=C)mpyrimidines
831570-1515N—Hsdef.secondary amide (solid): Amide II
841550-1510N—Hsdef.secondary amide (dil. soln.)
85~1500C=Cvarskeletal in-planearomatic C=C
861500-1470C=Ssstr.—N—C=S
871500-1300NH3+msym. def.amine salt
88~1468C—Hsscissoringalkane —CH2
89~1460C—Hmbend (asym.)—CH3
901460-1400C—Ossym. str.—COO- carboxylate
91~1455C—Hsscissoringalicyclic —CH2—
921450-1400C≡Nwstr.azo
931440-1395C—Owstr. (plus OH def.)carboxylic acid
941440-1400S=Osstr.RSO2R' sulfonic ester
951440-1325C—Omaliphatic aldehyde
961420-1406C—Hwin-plane bendC≡C—H
971420-1330S=Osstr.ROSO2R' sulfonic ester
981418-1400C—Nmstr.primary amine
99~1400C—Nwstr.aliphatic amine
1001390-1360C—Hmbend (sym.)gem-dimethyl
1011385-1375C—Hmbend (sym.)—CH3
1021370-1350C—Ostr.lactone
103~1360C—Hsbendacetone C—H
1041340-1280S=Owsym. str.RSO2R' sulfone
1051340-1180C—Nsstr.azide
1061320-1210C—Osstr.carboxylic acid
1071310-1250C—Osstr.benzoic ester phthalic ester
1081300-1200N—Hmdef.secondary amide
1091300-1250SO2ssym. str.sulfonamide
1101304-1270P=Osstr.phos. acid >P—H and P=O
1111270-1150C—Osstr.—(O≡)C—O—R in carboxylic esters
1121256-1232C—Osstr.CH3COOR acetic ester
113~1250C—Ostr.methyl ester
114~1250C—Ostr.>C=O
115~1250Si—CH3vssym. CH3 def.Si(CH3)3 trimethylsilyl
1161250-1150P=Ovsstr.phosphoric ester H-bonded P=O
1171235-1212C—Ssstr.(RO)2C=S thioketone
1181230-1150S=Osstr.(RO)2SO2 sulfuric ester
1191190-1170C—Hwin-plane bendp-substituted phenyl
1201125-1090 1110-1060(two)
1211220-1120C—Nmstr.aliphatic amine
1221200-1145S=Osstr.OSO2R sulfonic ester
1231200-1040C—Ostr.R—O—C—O cyclic acetal (4≥ x ≥ 6)
1241200-1170C—Osstr.propionic and higher esters
1251200-1000C—OHsstr.alcohols
1261185-1175C—Osstr.formic ester
1271175-1165 and 1110-1140C—Hsskeletal(CH2)nC≡ isopropyl
1281175-1125 1110-1070C—Hwin-plane bendunsubstituted phenyl
1291070-1000
1301150-1100S—Osasym. str.R2SO2 sulfone
1311150-1070C—O—Csasym. str.benzoic ester phthalic ester
1321150-1070C—O—Csasym. str.aliphatic ether
133~1120C—Ssstr.—NH—C(=S)— thioamide
1341110-1000P—Ssstr.monothioro derivs.
1351090-1030P—O—Cvsstr.phosphoric ester
1361060-1040S=Osstr.R2SO dimethylsulfoxyl
1371058-1053C—Ssstr.(RS)2C=S trithiocarbonate
1381050-1020S=Osstr.>S=O sulfoxide
139~1040C—Osstr.methylene acetal
1401005-990 and 910-905C—HvsbendC—C—CH2
141905-985 and 910-905C—Hout-of-plane bendRCH=CH2
142980-965C—Hout-of-plane bendtrans RHC=CHR'
143975-950P—O—Pbroadpyrophosphate
144965-960 and 909-940C—Hsbendvinyl ether
145960-930N—Ostr.oxime
146950-810C—Ostr.epoxide
147~948C—Hsbendvinyl ester
148~925C—Ostr.methylene acetal
149895-885C—Hout-of-plane bendRR'C=CH2
150~840Si—CH3vsstr.Si(CH3)3 trimethylsilyl
151840-790C—Hout-of-plane bendRR'C=CHR''
152840-790C—Hmskeletal(CH3)2C< isopropyl
153840-750C—Ostr.epoxide
154833-810C—Hvsout-of-plane bendp-substituted phenyl
155~800NH3+wrockingamine salt
156~800NH3+wrocking
157770-730C—Hsout-of-plane bendunsubstituted phenyl
158710-690
159~755Si—CH3vsstr.Si(CH3)2 trimethylsilyl
160750-700C—Clsstr.monochloro derivs.
161~720N—Hm(broad)def.secondary amide bonded: Amide V
162705-570C—Swstr.thiol sulfide
163~690C—Hout-of-plane bendcis RHC=CHR'
164~650C—Brsstr.bromo derivs.
165600-480C—Isstr.iodo derivs.
166550-450S—Svwstr.disulfide

NOMENCLATURE:

IR: Experimental IR frequencies
Note: Characteristic infrared bands shown by various groups.
Abbreviations: s, strong; d, double; m, medium; w, weak; v, very; var, variable.
asym., asymmetrical; def., deformation; str., stretching; sym., symmetrical.

References:

Tipson, R. (1968), Infrared spectroscopy of carbohydrates ::a review of the literature, National Institute of Standards and Technology, Gaithersburg, MD, DOI: https://doi.org/10.6028/NBS.MONO.110

Table 1: Comparisons between both experimental and BLYP calculated Infrared frequencies in cm-1 for both α- D-Glucose and β-D-Fructose as well as α- D-Glucose and β-D-Fructose monohydrates.

D-Glucose D-Fructose
IR α-D β-D-M Assignment IR α-D β-D-M Assignment
3410 3418 3146 ν OH 3393 3428 3513 ν OH
3393 3408 3123 ν OH 2933 2975 2957 νs CH of C2
2944 2963 3099 νs CH of C2 2899 2923 2925 νas CH of C1
2913 2939 3085 νas CH of C1 1637 1634 1665 δOH
1460 1441 1465 δCH2 + δOH + δCCH 1402 1392 1417 δOCH + δ COH + δ CCH
1382 1352 1390 δOCH + δ COH + δ CCH 1340 1330 1338 Δ CCH + δ OCH
1340 1330 1320 δ CCH + δ OCH 1265 1276 1292 δCH + δOH in plane, δ CCO
1244 1218 1278 δCH + δOH in plane 1203 1220 1232 δCH + δOH in plane
1149 1137 1205 ν CO + ν CC 1149 1148 1166 ν CO + νCC + δ CCO
1111 1116 1162 ν CO 1057 1082 1059 νCO
1050 1088 1082 ν CO + ν CC 977 990 990 νCO + δCCO
995 944 1032 ν CO + ν CC 873 856 908 δCH + νCC + δCCH
915 900 993 ν CO + ν CCH + νas ring of pyranose 818 816 884 δCCO + δCCH
837 834 909 δCH 780 784 828 δCCO + δ CCH
622 619 694 δ CCO + δ CCH CH2 648 624 658 CH2 + CH

NOMENCLATURE:

IR: Experimental frequencies
α-D: α -D-anomer
β-DM: β -D-anomer monohydrate

NOTE:

Reference: Ibrahim, M. A., Allam, M., El-Haes, H., Jalbout, A. F., & De Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Ecletica Quimica, 31(3), 15–21. DOI: https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21

Table 2: FTIR Spectra of Lauric Acid, Dextran, and Dextran-g-Lauric Acid.

Peak (cm⁻¹) Functional Group Lauric Acid Unmodified Dextran Dextran (Mw 6k, 24h) Dextran (Mw 6k, 48h) Dextran (Mw 40k, 24h)
3365 –OH Stretching
2931 –CH Stretching
2851 –CH Stretching
1721 C=O Stretching
1700 C=O Stretching
1648 C=O Stretching

NOMENCLATURE:

✓: Peaks are present and identified
–: Absent
Mw: Molecular weight

NOTE:

Reference: Su, C.-M., Lin, C., Huang, C.-Y., Yeh, J.-C., Tsai, T.-Y., Ger, T. R., Wang, M.-C., & Lou, S.-L. (2017). Dextran-g-lauric acid as IKK complex inhibitor carrier. RSC Advances, 7(89), 56247–56255. DOI: https://doi.org/10.1039/c7ra04544a

Table 3: Relocation of Key Maize Starch FTIR Bands After Treatment with Aqueous Na Silicate Solutions.

Native Starch (cm⁻¹) Starch at Water/Na Silicate Ratio 80 mL/g (cm⁻¹) 70 mL/g (cm⁻¹) 60 mL/g (cm⁻¹) 50 mL/g (cm⁻¹)
524 520 520 514
578 578 578 570 558
738 700 700 700
784 765 765 750
880 880 874 854
944 941 929 900 900
1000 996, 1017 (Split) 996, 1017 (Split) 996, 1017 (Split) 1000
1090 1090 1078 1078 1052
1180 1175 1150 1150 1121
1380 1380 1376 1347
1450 1450 1429 1381
1478 1476 1460 1423 1448
1649 1644 1642 1626 1626
2948 2935 2918 2918 2824 and 2918
3430 3400 3432 3432 3430

NOMENCLATURE:

NOTE:

Reference: Rashid, I., Omari, M. H. A., Leharne, S. A., Chowdhry, B. Z., & Badwan, A. (2012). Starch gelatinization using sodium silicate: FTIR, DSC, XRPD, and NMR studies. Starch - Stärke, 64(9), 713–728. Portico. DOI: https://doi.org/10.1002/star.201100190

Table 4: FTIR Spectra of Pullulan: Characteristic Absorption Bands and Functional Group Assignments

Wavenumber (cm⁻¹) Vibration Mode Functional Group/Assignment
3400–3200 O–H stretching Hydroxyl groups (OH)
2920–2850 C–H stretching Aliphatic C–H bonds
1640–1630 O–H bending (adsorbed water) Water absorbed in the sample
1450–1400 C–H bending CH₂ and CH₃ groups
1370–1350 C–H bending CH₃ groups
1150–1100 C–O–C stretching Glycosidic linkage (C–O–C)
1070–1030 C–O stretching C–O bonds in the sugar ring
1040, 1020, 996 Glycosidic linkage vibrations Specific to pullulan structure
930–910 C–O–C stretching Glycosidic linkage (C–O–C)
850–840 C–H bending Anomeric C–H deformation

NOMENCLATURE:

NOTE:

Reference:
1. Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate Research, 337(16), 1445–1451. DOI: https://doi.org/10.1016/s0008-6215(02)00209-4
2. Firsov, S. P., Zhbankov, R. G., Petrov, P. T., Shingel, K. I., & Tsarenkov, V. M. (1999). Analysis of dextran and pullulan molecular fraction structure by the method of IR-spectroscopy. Spectroscopy of Biological Molecules: New Directions, 323–324. DOI: hhttps://doi.org/10.1007/978-94-011-4479-7_144

Table 5: Characteristic IR Bands of Cellulose, sodium carboxymethylcellulose (CMC), carboxymethylcellulose acetate(CMCA), and carboxymethylcellulose acetate butyrate (CMCAB)

Material Wavenumber (cm⁻¹) Assignment Relative Absorbance
Cellulose 3482.81 Strong hydrogen-bonded O-H stretching vibration 3.59
2897.52 C-H stretching 1.74
1645.95 O-H bending from absorbed water
1428.99 CH₂ bending of pyranose ring 2.12
1370.18 C-H bending 2.56
1034.62 C-O-C pyranose ring vibration 2.42
898.66 β-glycosidic linkage between glucose units in cellulose 1.08
CMC 3445.21 O-H stretching 1.31
2901.38 Stretching vibration of methine (C-H) 3.37
1599.66 C=O group
1414.53 Anti-symmetric and symmetric stretching vibration peak of COO 0.99
1369.21 C-H bending 0.99
1060.66 C-O-C stretching 1.21
CMCA 3447.13 Unsubstituted O-H group 0.68
2911.02 COOH of acetyl group and methyl –CH₃ of CMCA 1.36
1743.33, 1639.2 Asymmetric and symmetric C=O coupled stretching 1.98, 1
1379.82, 1434.38 Symmetric and asymmetric vibrations of CH₃ 1.79, 1.65
1434.38 CH₂ band 1.65
1245.79, 1037.52, 904.45 Asymmetric stretching vibrations of C-O-C in ester 2.03, 2.52, 1.02
CMCAB 3531.99 Unsubstituted O-H group 1.1
2966.95 COOH dimer group and methyl –CH₃ of CMCAB 0.43
2884.99 Methylene –CH₂ of CMCAB 0.03
1748.16, 1640.16 Asymmetric and symmetric C=O coupled stretching 2.23, 1
1375 C-CH₃ of acetyl 1.22
1240.97, 1168.65, 1064.51 Asymmetric vibrations of C-O-C to prove the existence of an ester 1.66, 1.96, 2.36

NOMENCLATURE: CMC: Sodium carboxymethylcellulose
CMCA: Carboxymethylcellulose acetate
CMCAB: Carboxymethylcellulose acetate butyrate

NOTE:

Reference:
El-Sakhawy, M.A., Kamel, S., Salama, A., & Tohamy, H.S. (2018). PREPARATION AND INFRARED STUDY OF CELLULOSE BASED AMPHIPHILIC MATERIALS. DOI: http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2018)/p.193-200.pdf