IR Spectra for Carbohydrates

Table: IR Spectra of Sucrose.

Material Wavenumber (cm⁻¹) Assignment Annotations Ref
Solid Sucrose1461R1
Solid Sucrose1431δC-O-HR1
Solid Sucrose1410R1
Solid Sucrose1370δC-O-H glucR1
Solid Sucrose1346δC-O-H frucR1
Solid Sucrose1323R1
Solid Sucrose1280R1
Solid Sucrose1239ωCH₂R1
Solid Sucrose1162R1
Solid Sucrose1130νCO endo frucR1
Solid Sucrose1106νC-O endo glucR1
Solid Sucrose1069R1
Solid Sucrose1052νC-OR1
Solid Sucrose1008δC-O-HR1
Solid Sucrose990νC-O exoR1
Solid Sucrose941νC-C glucR1
Solid Sucrose911νC-C frucR1
Solid Sucrose867νC-CR1
Solid Sucrose849R1
Aqueous Sucrose1640ν₂ H₂OR1
Aqueous Sucrose1451R1
Aqueous Sucrose1430δC-O-HR1
Aqueous Sucrose1366δC-O-H glucR1
Aqueous Sucrose1336δC-O-H frucR1
Aqueous Sucrose1265δCH₂R1
Aqueous Sucrose1247ωCH₂R1
Aqueous Sucrose1136νCO endo frucR1
Aqueous Sucrose1113νC-O endo glucR1
Aqueous Sucrose1055νC-OR1
Aqueous Sucrose993νC-O exoR1
Aqueous Sucrose945νC-C glucR1
Aqueous Sucrose925νC-C frucR1
Aqueous Sucrose870νC-CR1
Aqueous Sucrose835δC₂-C₁-H glucR1
Aqueous Sucrose828δC₃-C₂-H frucR1
Sucrose (H₂O)₅~3350ν₃ H₂O + νOHR2
Sucrose (H₂O)₅~3240ν₁ H₂O + νOHR2
Sucrose (H₂O)₅2974νCH₃ asR2
Sucrose (H₂O)₅2938νCH₂ asR2
Sucrose (H₂O)₅2882νCH₂ sR2
Sucrose (H₂O)₅2850comb.R2
Sucrose (H₂O)₅2680comb.R2
Sucrose (H₂O)₅~2500comb.R2
Sucrose (H₂O)₅~2125ν₂ H₂O + νLH₂OR2
Sucrose (H₂O)₅1645ν₂ H₂OR2
Sucrose (H₂O)₅1454R2
Sucrose (H₂O)₅1425δC-O-HR2
Sucrose (H₂O)₅1370δC-O-H glucR2
Sucrose (H₂O)₅1333δC-O-H frucR2
Sucrose (H₂O)₅1275δCH₂R2
Sucrose (H₂O)₅1210R2
Sucrose (H₂O)₅1135νCO endo frucR2
Sucrose (H₂O)₅1113νC-O endo glucR2
Sucrose (H₂O)₅1055νC-OvsR2
Sucrose (H₂O)₅998νC-O exovsR2
Sucrose (H₂O)₅929νC-C frucR2
Sucrose (H₂O)₅868νC-CR2
Sucrose (H₂O)₂~3290ν₃ H₂O + νOHR2
Sucrose (H₂O)₂~3240ν₁ H₂O + νOHR2
Sucrose (H₂O)₂2970νCH₃ asR2
Sucrose (H₂O)₂2933νCH₂ asR2
Sucrose (H₂O)₂2880νCH₂ sR2
Sucrose (H₂O)₂2843comb.R2
Sucrose (H₂O)₂2680comb.R2
Sucrose (H₂O)₂~2500comb.R2
Sucrose (H₂O)₂~2125ν₂ H₂O + νLH₂OR2
Sucrose (H₂O)₂1648ν₂ H₂OR2
Sucrose (H₂O)₂1452R2
Sucrose (H₂O)₂1420δC-O-HR2
Sucrose (H₂O)₂1370δC-O-H glucR2
Sucrose (H₂O)₂1331δC-O-H frucR2
Sucrose (H₂O)₂1270δCH₂R2
Sucrose (H₂O)₂1210R2
Sucrose (H₂O)₂1132νCO endo frucR2
Sucrose (H₂O)₂1110νC-O endo glucR2
Sucrose (H₂O)₂1045νC-OvsR2
Sucrose (H₂O)₂993νC-O exovsR2
Sucrose (H₂O)₂928νC-C frucR2
Sucrose (H₂O)₂868νC-CR2
Sucrose (H₂O)₂830δC₃-C₂-H frucR2

NOMENCLATURE:

IR: Experimental IR frequencies
Note: The water bands are identified by H2O; the other bands are those of sucrose.
Abbreviations: fru, D-fructosyl moiety; glu, D-glucosyl moiety; δ, deformation; ν, stretch; τ, torsion; ω, wag; endo, endocyclic; exo, exocyclic; s, strong; d, double; m, medium; sh, shoulder; w, weak. Annotations: The following symbols are used: S, strong; M, medium; W, weak; Sh, shoulder; Br, broad; V, very; d, doublet

References:

R1: Kodad H., Mokhlisse R., Davin E., Mille G. Etude IRTF Par Reflexion Totale Attenuee (ATR) De Sucres en Solution Aqueuse. Can. J. Appl. Spectrosc. 1994;39:107–112.

R2: Max, J.-J., & Chapados, C. (2001). Sucrose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 105(47), 10681–10688. DOI: https://doi.org/10.1021/jp012809j


Table: IR spectra of Glucose.

Material Wavenumber (cm⁻¹) Assignment Annotations Ref
Glucose (H₂O)₅~5187R3
Glucose (H₂O)₅~3612R3
Glucose (H₂O)₅3530R3
Glucose (H₂O)₅3385ν₃ H₂O + νOHR3
Glucose (H₂O)₅3212ν₁ H₂O + νOHR3
Glucose (H₂O)₅2925νCH₂ asR3
Glucose (H₂O)₅2870νCH₂ sR3
Glucose (H₂O)₅~2120ν₂ H₂O + νLH₂OR3
Glucose (H₂O)₅1640ν₂ H₂OR3
Glucose (H₂O)₅1435δC-O-HwR3
Glucose (H₂O)₅1368δC-O-H glucR3
Glucose (H₂O)₅1316R3
Glucose (H₂O)₅1288R3
Glucose (H₂O)₅1263δCH₂R3
Glucose (H₂O)₅1230ωCH₂R3
Glucose (H₂O)₅1201R3
Glucose (H₂O)₅1158R3
Glucose (H₂O)₅1132νCO endo frucshR3
Glucose (H₂O)₅1106νC-O endo glucshR3
Glucose (H₂O)₅1081sR3
Glucose (H₂O)₅1058νC-OR3
Glucose (H₂O)₅1034sR3
Glucose (H₂O)₅1013δC-O-HR3
Glucose (H₂O)₅991.5νC-O exoR3
Glucose (H₂O)₅936νC-C glucR3
Glucose (H₂O)₅895νC-C frucR3
Glucose (H₂O)₅863νC-CR3
Glucose (H₂O)₅837δC₂-C₁-H glucR3
Glucose (H₂O)₂3505R3
Glucose (H₂O)₂3380ν₃ H₂O + νOHR3
Glucose (H₂O)₂3225ν₁ H₂O + νOHdR3
Glucose (H₂O)₂2930νCH₂ asR3
Glucose (H₂O)₂2885νCH₂ sR3
Glucose (H₂O)₂2860comb.R3
Glucose (H₂O)₂2130ν₂ H₂O + νLH₂OR3
Glucose (H₂O)₂1642ν₂ H₂OR3
Glucose (H₂O)₂1462R3
Glucose (H₂O)₂1420δC-O-HR3
Glucose (H₂O)₂1362δC-O-H glucR3
Glucose (H₂O)₂1335δC-O-H frucR3
Glucose (H₂O)₂1315R3
Glucose (H₂O)₂1284R3
Glucose (H₂O)₂1260δCH₂R3
Glucose (H₂O)₂1226ωCH₂R3
Glucose (H₂O)₂1199R3
Glucose (H₂O)₂1151R3
Glucose (H₂O)₂1102νC-O endo glucR3
Glucose (H₂O)₂1076mR3
Glucose (H₂O)₂1053νC-OshR3
Glucose (H₂O)₂1027mR3
Glucose (H₂O)₂1008δC-O-HshR3
Glucose (H₂O)₂988νC-O exoR3
Glucose (H₂O)₂919R3
Glucose (H₂O)₂895νC-C frucR3
Glucose (H₂O)₂863νC-CR3
Glucose (H₂O)₂841δC₂-C₁-H glucR3
Glucose (H₂O)₂769R3

NOMENCLATURE:

IR: Experimental IR frequencies
Note: The water bands are identified by H2O; the other bands are those of sucrose.
Abbreviations: fru, D-fructosyl moiety; glu, D-glucosyl moiety; δ, deformation; ν, stretch; τ, torsion; ω, wag; endo, endocyclic; exo, exocyclic; s, strong; d, double; m, medium; sh, shoulder; w, weak. Annotations: The following symbols are used: S, strong; M, medium; W, weak; Sh, shoulder; Br, broad; V, very; d, doublet

References:

R3: Max, J.-J., & Chapados, C. (2007). Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 111(14), 2679–2689. DOI: https://doi.org/10.1021/jp066882r


Table: IR spectra of Fructose.

Material Wavenumber (cm⁻¹) Assignment Annotations Ref
Fructose (H₂O)₅~5180R3
Fructose (H₂O)₅3520R3
Fructose (H₂O)₅3385ν₃ H₂O + νOHR3
Fructose (H₂O)₅3225ν₁ H₂O + νOHR3
Fructose (H₂O)₅2986νCH₃ asR3
Fructose (H₂O)₅2946νCH₂ asR3
Fructose (H₂O)₅2887νCH₂ sR3
Fructose (H₂O)₅~2855comb.R3
Fructose (H₂O)₅2125ν₂ H₂O + νLH₂OR3
Fructose (H₂O)₅1645ν₂ H₂OR3
Fructose (H₂O)₅1458R3
Fructose (H₂O)₅1429δC-O-HR3
Fructose (H₂O)₅1410R3
Fructose (H₂O)₅1375δC-O-H glucR3
Fructose (H₂O)₅1344δC-O-H frucR3
Fructose (H₂O)₅1318R3
Fructose (H₂O)₅1299R3
Fructose (H₂O)₅1264δCH₂R3
Fructose (H₂O)₅1243ωCH₂R3
Fructose (H₂O)₅1218R3
Fructose (H₂O)₅1187R3
Fructose (H₂O)₅1158R3
Fructose (H₂O)₅1104νC-O endo glucmR3
Fructose (H₂O)₅1084mR3
Fructose (H₂O)₅1062νC-OsR3
Fructose (H₂O)₅1033shR3
Fructose (H₂O)₅1014δC-O-HshR3
Fructose (H₂O)₅993νC-O exoR3
Fructose (H₂O)₅980mR3
Fructose (H₂O)₅966mR3
Fructose (H₂O)₅936νC-C glucR3
Fructose (H₂O)₅919R3
Fructose (H₂O)₅~891νC-C frucR3
Fructose (H₂O)₅868νC-Cm, dR3
Fructose (H₂O)₅838δC₂-C₁-H glucR3
Fructose (H₂O)₅820δC₃-C₂-H frucmR3
Fructose (H₂O)~3510R3
Fructose (H₂O)3369ν₃ H₂O + νOHR3
Fructose (H₂O)3236ν₁ H₂O + νOHR3
Fructose (H₂O)2981νCH₃ asR3
Fructose (H₂O)2940νCH₂ asR3
Fructose (H₂O)2884νCH₂ sR3
Fructose (H₂O)-2505comb.R3
Fructose (H₂O)2122ν₂ H₂O + νLH₂OR3
Fructose (H₂O)1648ν₂ H₂OR3
Fructose (H₂O)1457R3
Fructose (H₂O)~1425δC-O-HR3
Fructose (H₂O)1407R3
Fructose (H₂O)1374δC-O-H glucR3
Fructose (H₂O)1342δC-O-H frucR3
Fructose (H₂O)1294R3
Fructose (H₂O)1262δCH₂R3
Fructose (H₂O)1236ωCH₂R3
Fructose (H₂O)1185R3
Fructose (H₂O)1152R3
Fructose (H₂O)1102νC-O endo glucmR3
Fructose (H₂O)1080mR3
Fructose (H₂O)1053νC-OsR3
Fructose (H₂O)1028shR3
Fructose (H₂O)1010δC-O-HshR3
Fructose (H₂O)~994νC-O exoR3
Fructose (H₂O)978mR3
Fructose (H₂O)963mR3
Fructose (H₂O)936νC-C glucR3
Fructose (H₂O)918R3
Fructose (H₂O)895νC-C frucR3
Fructose (H₂O)866νC-Cm, dR3
Fructose (H₂O)839δC₂-C₁-H glucR3
Fructose (H₂O)817δC₃-C₂-H frucmR3
Fructose (H₂O)797R3
Fructose (H₂O)778mR3
Fructose (H₂O)~740R3

NOMENCLATURE:

IR: Experimental IR frequencies
Note: The water bands are identified by H2O; the other bands are those of sucrose.
Abbreviations: fru, D-fructosyl moiety; glu, D-glucosyl moiety; δ, deformation; ν, stretch; τ, torsion; ω, wag; endo, endocyclic; exo, exocyclic; s, strong; d, double; m, medium; sh, shoulder; w, weak. Annotations: The following symbols are used: S, strong; M, medium; W, weak; Sh, shoulder; Br, broad; V, very; d, doublet

References:

R3: Max, J.-J., & Chapados, C. (2007). Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 111(14), 2679–2689. DOI: https://doi.org/10.1021/jp066882r


Table 1: Comparisons between both experimental and BLYP calculated Infrared frequencies in cm-1 for both α- D-Glucose and β-D-Fructose as well as α- D-Glucose and β-D-Fructose monohydrates.

D-Glucose D-Fructose
IR α-D β-D-M Assignment IR α-D β-D-M Assignment
3410 3418 3146 ν OH 3393 3428 3513 ν OH
3393 3408 3123 ν OH 2933 2975 2957 νs CH of C2
2944 2963 3099 νs CH of C2 2899 2923 2925 νas CH of C1
2913 2939 3085 νas CH of C1 1637 1634 1665 δOH
1460 1441 1465 δCH2 + δOH + δCCH 1402 1392 1417 δOCH + δ COH + δ CCH
1382 1352 1390 δOCH + δ COH + δ CCH 1340 1330 1338 Δ CCH + δ OCH
1340 1330 1320 δ CCH + δ OCH 1265 1276 1292 δCH + δOH in plane, δ CCO
1244 1218 1278 δCH + δOH in plane 1203 1220 1232 δCH + δOH in plane
1149 1137 1205 ν CO + ν CC 1149 1148 1166 ν CO + νCC + δ CCO
1111 1116 1162 ν CO 1057 1082 1059 νCO
1050 1088 1082 ν CO + ν CC 977 990 990 νCO + δCCO
995 944 1032 ν CO + ν CC 873 856 908 δCH + νCC + δCCH
915 900 993 ν CO + ν CCH + νas ring of pyranose 818 816 884 δCCO + δCCH
837 834 909 δCH 780 784 828 δCCO + δ CCH
622 619 694 δ CCO + δ CCH CH2 648 624 658 CH2 + CH

NOMENCLATURE:

IR: Experimental frequencies
α-D: α -D-anomer
β-DM: β -D-anomer monohydrate

NOTE:

Reference: Ibrahim, M. A., Allam, M., El-Haes, H., Jalbout, A. F., & De Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Ecletica Quimica, 31(3), 15–21. DOI: https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21

Table 2: FTIR Spectra of Lauric Acid, Dextran, and Dextran-g-Lauric Acid.

Peak (cm⁻¹) Functional Group Lauric Acid Unmodified Dextran Dextran (Mw 6k, 24h) Dextran (Mw 6k, 48h) Dextran (Mw 40k, 24h)
3365 –OH Stretching
2931 –CH Stretching
2851 –CH Stretching
1721 C=O Stretching
1700 C=O Stretching
1648 C=O Stretching

NOMENCLATURE:

✓: Peaks are present and identified
–: Absent
Mw: Molecular weight

NOTE:

Reference: Su, C.-M., Lin, C., Huang, C.-Y., Yeh, J.-C., Tsai, T.-Y., Ger, T. R., Wang, M.-C., & Lou, S.-L. (2017). Dextran-g-lauric acid as IKK complex inhibitor carrier. RSC Advances, 7(89), 56247–56255. DOI: https://doi.org/10.1039/c7ra04544a

Table 3: Relocation of Key Maize Starch FTIR Bands After Treatment with Aqueous Na Silicate Solutions.

Native Starch (cm⁻¹) Starch at Water/Na Silicate Ratio 80 mL/g (cm⁻¹) 70 mL/g (cm⁻¹) 60 mL/g (cm⁻¹) 50 mL/g (cm⁻¹)
524 520 520 514
578 578 578 570 558
738 700 700 700
784 765 765 750
880 880 874 854
944 941 929 900 900
1000 996, 1017 (Split) 996, 1017 (Split) 996, 1017 (Split) 1000
1090 1090 1078 1078 1052
1180 1175 1150 1150 1121
1380 1380 1376 1347
1450 1450 1429 1381
1478 1476 1460 1423 1448
1649 1644 1642 1626 1626
2948 2935 2918 2918 2824 and 2918
3430 3400 3432 3432 3430

NOMENCLATURE:

NOTE:

Reference: Rashid, I., Omari, M. H. A., Leharne, S. A., Chowdhry, B. Z., & Badwan, A. (2012). Starch gelatinization using sodium silicate: FTIR, DSC, XRPD, and NMR studies. Starch - Stärke, 64(9), 713–728. Portico. DOI: https://doi.org/10.1002/star.201100190

Table 4: FTIR Spectra of Pullulan: Characteristic Absorption Bands and Functional Group Assignments

Wavenumber (cm⁻¹) Vibration Mode Functional Group/Assignment
3400–3200 O–H stretching Hydroxyl groups (OH)
2920–2850 C–H stretching Aliphatic C–H bonds
1640–1630 O–H bending (adsorbed water) Water absorbed in the sample
1450–1400 C–H bending CH₂ and CH₃ groups
1370–1350 C–H bending CH₃ groups
1150–1100 C–O–C stretching Glycosidic linkage (C–O–C)
1070–1030 C–O stretching C–O bonds in the sugar ring
1040, 1020, 996 Glycosidic linkage vibrations Specific to pullulan structure
930–910 C–O–C stretching Glycosidic linkage (C–O–C)
850–840 C–H bending Anomeric C–H deformation

NOMENCLATURE:

NOTE:

Reference:
1. Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate Research, 337(16), 1445–1451. DOI: https://doi.org/10.1016/s0008-6215(02)00209-4
2. Firsov, S. P., Zhbankov, R. G., Petrov, P. T., Shingel, K. I., & Tsarenkov, V. M. (1999). Analysis of dextran and pullulan molecular fraction structure by the method of IR-spectroscopy. Spectroscopy of Biological Molecules: New Directions, 323–324. DOI: hhttps://doi.org/10.1007/978-94-011-4479-7_144

Table 5: Characteristic IR Bands of Cellulose, sodium carboxymethylcellulose (CMC), carboxymethylcellulose acetate(CMCA), and carboxymethylcellulose acetate butyrate (CMCAB)

Material Wavenumber (cm⁻¹) Assignment Relative Absorbance
Cellulose 3482.81 Strong hydrogen-bonded O-H stretching vibration 3.59
2897.52 C-H stretching 1.74
1645.95 O-H bending from absorbed water
1428.99 CH₂ bending of pyranose ring 2.12
1370.18 C-H bending 2.56
1034.62 C-O-C pyranose ring vibration 2.42
898.66 β-glycosidic linkage between glucose units in cellulose 1.08
CMC 3445.21 O-H stretching 1.31
2901.38 Stretching vibration of methine (C-H) 3.37
1599.66 C=O group
1414.53 Anti-symmetric and symmetric stretching vibration peak of COO 0.99
1369.21 C-H bending 0.99
1060.66 C-O-C stretching 1.21
CMCA 3447.13 Unsubstituted O-H group 0.68
2911.02 COOH of acetyl group and methyl –CH₃ of CMCA 1.36
1743.33, 1639.2 Asymmetric and symmetric C=O coupled stretching 1.98, 1
1379.82, 1434.38 Symmetric and asymmetric vibrations of CH₃ 1.79, 1.65
1434.38 CH₂ band 1.65
1245.79, 1037.52, 904.45 Asymmetric stretching vibrations of C-O-C in ester 2.03, 2.52, 1.02
CMCAB 3531.99 Unsubstituted O-H group 1.1
2966.95 COOH dimer group and methyl –CH₃ of CMCAB 0.43
2884.99 Methylene –CH₂ of CMCAB 0.03
1748.16, 1640.16 Asymmetric and symmetric C=O coupled stretching 2.23, 1
1375 C-CH₃ of acetyl 1.22
1240.97, 1168.65, 1064.51 Asymmetric vibrations of C-O-C to prove the existence of an ester 1.66, 1.96, 2.36

NOMENCLATURE: CMC: Sodium carboxymethylcellulose
CMCA: Carboxymethylcellulose acetate
CMCAB: Carboxymethylcellulose acetate butyrate

NOTE:

Reference:
El-Sakhawy, M.A., Kamel, S., Salama, A., & Tohamy, H.S. (2018). PREPARATION AND INFRARED STUDY OF CELLULOSE BASED AMPHIPHILIC MATERIALS. DOI: http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2018)/p.193-200.pdf