IR Spectra for Carbohydrates
Table: IR Spectra of Sucrose, Glucose, and Fructose.
Material | Wavenumber (cm⁻¹) | Assignment | Annotations | Ref |
---|---|---|---|---|
2-deoxy-D-ribose | 1011 | νas (COC) ν (CC) ν (CO) β (CCH) | IR | R4 |
2-deoxy-D-ribose | 1017 | νas (COC) ν (CC) ν (CO) β (CCH) | RS | R4 |
2-deoxy-D-ribose | 1041 | νas (COC) ν (CC) ν (CO) β (CCH) | IR | R4 |
2-deoxy-D-ribose | 1044 | νas (COC) ν (CC) ν (CO) β (CCH) | RS | R4 |
2-deoxy-D-ribose | 1082 | νas (COC) ν (CC) ν (CO) β (CCH) | RS | R4 |
2-deoxy-D-ribose | 1086 | νas (COC) ν (CC) ν (CO) β (CCH) | IR | R4 |
2-deoxy-D-ribose | 1111 | νas (COC) ν (CC) ν (CO) β (CCH) | IR | R4 |
2-deoxy-D-ribose | 1115 | νas (COC) ν (CC) ν (CO) β (CCH) | RS | R4 |
2-deoxy-D-ribose | 1147 | ν (CO) ν (CC) β (COH) | IR | R4 |
2-deoxy-D-ribose | 1148 | ν (CO) ν (CC) β (COH) | RS | R4 |
2-deoxy-D-ribose | 1196 | ν (CO) ν (CC) | RS | R4 |
2-deoxy-D-ribose | 1234 | τ (CH2) | IR | R4 |
2-deoxy-D-ribose | 1235 | τ (CH2) | RS | R4 |
2-deoxy-D-ribose | 1256 | τ (CH2) | IR | R4 |
2-deoxy-D-ribose | 1257 | τ (CH2) | RS | R4 |
2-deoxy-D-ribose | 1277 | τ (CH2) | IR | R4 |
2-deoxy-D-ribose | 1279 | τ (CH2) | RS | R4 |
2-deoxy-D-ribose | 1298 | τ (CH2) | RS | R4 |
2-deoxy-D-ribose | 1300 | τ (CH2) | IR | R4 |
2-deoxy-D-ribose | 1343 | ω (CH2) | IR | R4 |
2-deoxy-D-ribose | 1348 | ω (CH2) | RS | R4 |
2-deoxy-D-ribose | 1379 | ω (CH2) | RS | R4 |
2-deoxy-D-ribose | 1387 | ω (CH2) | IR | R4 |
2-deoxy-D-ribose | 1412 | None | IR | R4 |
2-deoxy-D-ribose | 1443 | δ (CH2) | RS | R4 |
NOMENCLATURE:
R1: Kodad H., Mokhlisse R., Davin E., Mille G. Etude IRTF Par Reflexion Totale Attenuee (ATR) De Sucres en Solution Aqueuse. Can. J. Appl. Spectrosc. 1994;39:107–112.
R2: Max, J.-J., & Chapados, C. (2001). Sucrose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 105(47), 10681–10688. DOI: https://doi.org/10.1021/jp012809j
R3: Max, J.-J., & Chapados, C. (2007). Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy. The Journal of Physical Chemistry A, 111(14), 2679–2689. DOI: https://doi.org/10.1021/jp066882r
R4: Wiercigroch, E., Szafraniec, E., Czamara, K., Pacia, M. Z., Majzner, K., Kochan, K., Kaczor, A., Baranska, M., & Malek, K. (2017). Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 317–335. DOI: https://doi.org/10.1016/j.saa.2017.05.045
Table: Group-Frequency IR Spectra Data (Carbohydrate Functional Groups)
ID | Wavenumber (cm-1) | Group | Annotations (Intensity) | Types of Vibration | Assignments (Remarks) |
---|---|---|---|---|---|
1 | 4505-4200 | C—H | w | str. | aliphatic (combination) |
2 | 4255-4000 | C—H | w | str. | aromatic (combination) |
3 | 3650-3500 | O—H | var | str. | free OH oxime |
4 | 3640-3623 | O—H | m(sharp) | str. | free OH alcohols |
5 | 3600-3100 | O—H | m | str. | water of crystallization |
6 | 3590-3425 | O—H | var(sharp) | str. | intramolec. bonded OH |
7 | 3550-3500 | O—H | m | str. | free OH carboxylic acid (v. dil. soln.) |
8 | 3550-3450 | O—H | var(sharp) | str. | intermolec. bonded OH (dimeric) |
9 | 3550-3165 | C=O | w | str. | carbonyl (first overtone) |
10 | ~3520 | N—H | s | str. | primary amide (free) |
11 | ~3500 | N—H | m | str. (asym.) | primary amine free NH (dil. soln.) |
12 | 3500-3300 | N—H | m | str. | secondary amine free NH |
13 | 3500-3060 | N—H | m | str. | associated NH amine or amide |
14 | ~3400 | N—H | s | str. | primary amide (free) |
15 | ~3400 | N—H | m | str. (sym.) | primary amine free NH (dil. soln.) |
16 | 3400-3225 | O—H | s(broad) | str. | intermolec. bonded OH (polymeric) |
17 | ~3380 | NH3+ | m | str. | amine salt (soln.) |
18 | 3355-3145 | NH3+ | m | str. | amine salt (solid) several bands |
19 | ~3350 | N—H | m | str. | primary amide (bonded) |
20 | ~3300 | C—H | s | str. | ≡C—H acetylenes |
21 | 3300-2500 | O—H | w(v broad) | str. | H-bonded carboxylic acid dimers |
22 | ~3280 | NH3+ | m | str. | amine salt (soln.) |
23 | ~3175 | N—H | m | str. | primary amide (bonded) |
24 | 3155-3050 | C—H | w | str. | —CH=CH—O— and —CH=C—O— |
25 | 3095-3075 | C—H | m | str. | RCH=CH2 olefin |
26 | 3075-3030 | C—H | w-m | str. | C—H of aromatic ring |
27 | 3050-2995 | C—H | w | str. | C—H of aromatic ring of epoxide (shifts to 3040-3030 if ring strain increases) |
28 | 3040-3010 | C—H | s | s m | >CH2;RCH=CH2; RCH=CHR' (cis or trans); RCR'=CHR'; olefin |
29 | ~2960 | C—H | s | str. (asym.) | C-methyl |
30 | ~2925 | C—H | s | str. (asym.) | >CH2 methylene Ar—CH3 |
31 | 2900-2880 | C—H | w | str. | C—H methine |
32 | 2900-2705 | C—H | w | str. | —C(=O)H aldehyde (two) |
33 | 2900-2300 | N—H | w | str. | quaternary amine salt bonded (several) |
34 | ~2875 | C—H | s | str. (sym.) | C-methyl |
35 | ~2850 | C—H | s | str. (sym.) | >CH2 methylene |
36 | 2835-2815 | C—H | s | str. | O-methyl |
37 | ~2825 | C—H | m | str. | —CH—(OCH2—)2 alkyl acetal |
38 | ~2780 | C—H | w(broad) | str. | —O—CH2—O— phosphoric ester H-bonded |
39 | 2705-2300 | NH2+ NH+ | s | str. | (may be several bands) |
40 | ~2680 | S—H | w | str. | thiol free |
41 | ~2400 | S—H | w | str. | thiol H-bonded |
42 | ~2270 | C≡N | vs | asym. str. | isocyanate |
43 | 2260-2210 | C≡C | w | str. | RC≡CR' |
44 | 2234-2215 | C≡N | var | str. | unsatd. conj. nitrile |
45 | 2200-2050 | C≡S | vs | asym. str. | —N—C≡S isothiocyanate (2 or more bands) |
46 | 2200-2000 | — | s | — | cyanide thiocyanate cyanate |
47 | 2180-2120 | C≡N | — | str. | R—N≡C |
48 | 2160-2120 | N≡N | s | str. | azide |
49 | 2140-2100 | C≡C | w | str. | RC≡C—H |
50 | ~1810 | C=O | s | str. | —COCl aliphatic acid chloride |
51 | 1780-1740 | C=O | s | str. | —O—(C=O)—O— carbonate |
52 | ~1770 | C=O | s | str. | γ-lactone |
53 | 1745-1735 | C=O | s | str. | satd. esters |
54 | ~1740 | C=O | s | str. | δ-lactone |
55 | ~1727 | C=O | s | str. | —C(=O)H aldehyde |
56 | 1725-1705 | C=O | s | str. | ketone |
57 | ~1720 | C=O | s | str. | benzoic ester |
58 | 1720-1700 | C=O | s | str. | —COOH |
59 | 1700-1670 | C=O | s | str. | —CONHR secondary amide free (dil. soln.): Amide I |
60 | 1690-1670 | C=O | s | str. | —CONH2 primary amide free (dil. soln.): Amide I |
61 | 1680-1630 | C=O | s | str. | secondary amide (solid) |
62 | 1680-1620 | C=C | var | str. | nonconjugated C=C |
63 | ~1678 | C=C | — | — | trans olefin |
64 | ~1675 | C=S | s | str. | thioester |
65 | ~1675 | C=O | s | str. | thioester |
66 | ~1670 | C=N | w | str. | aliphatic oxime |
67 | 1670-1620 | C=O | s | str. | primary amide (solid) H-bonded 2 bands: Amide I |
68 | 1662-1652 | C=C | — | — | cis olefin |
69 | 1658-1648 | C=C | — | — | terminal olefin |
70 | 1650-1620 | N—H | s | def. | primary amide (solid): Amide II |
71 | 1650-1600 | NO2 | s | asym. str. | —O—NO2 nitrate |
72 | 1650-1588 | N—H | m-s | def. | NH2 |
73 | 1650-1550 | N—H | w | def. | NHR |
74 | 1648-1638 | C=C | — | — | terminal olefin |
75 | ~1625 | C=C | s | str. | Ph-conjugated C=C |
76 | 1625-1585 | C=C | m | skeletal in-plane | aromatic C=C |
77 | 1620-1500 | N—H | s | def. | primary amide (dil. soln.) |
78 | 1620-1560 | NH2+ | m-s | def. | — |
79 | 1610-1540 | C—O | vs | asym. str. | —COO- carboxylate |
80 | ~1600 | C=C | s | str. | CO or C=C conjugated with C=C |
81 | ~1585 | NH3+ | m | asym. def. | amine salt |
82 | 1580-1520 | C=N (plus C=C) | m | — | pyrimidines |
83 | 1570-1515 | N—H | s | def. | secondary amide (solid): Amide II |
84 | 1550-1510 | N—H | s | def. | secondary amide (dil. soln.) |
85 | ~1500 | C=C | var | skeletal in-plane | aromatic C=C |
86 | 1500-1470 | C=S | s | str. | —N—C=S |
87 | 1500-1300 | NH3+ | m | sym. def. | amine salt |
88 | ~1468 | C—H | s | scissoring | alkane —CH2 |
89 | ~1460 | C—H | m | bend (asym.) | —CH3 |
90 | 1460-1400 | C—O | s | sym. str. | —COO- carboxylate |
91 | ~1455 | C—H | s | scissoring | alicyclic —CH2— |
92 | 1450-1400 | C≡N | w | str. | azo |
93 | 1440-1395 | C—O | w | str. (plus OH def.) | carboxylic acid |
94 | 1440-1400 | S=O | s | str. | RSO2R' sulfonic ester |
95 | 1440-1325 | C—O | m | — | aliphatic aldehyde |
96 | 1420-1406 | C—H | w | in-plane bend | C≡C—H |
97 | 1420-1330 | S=O | s | str. | ROSO2R' sulfonic ester |
98 | 1418-1400 | C—N | m | str. | primary amine |
99 | ~1400 | C—N | w | str. | aliphatic amine |
100 | 1390-1360 | C—H | m | bend (sym.) | gem-dimethyl |
101 | 1385-1375 | C—H | m | bend (sym.) | —CH3 |
102 | 1370-1350 | C—O | — | str. | lactone |
103 | ~1360 | C—H | s | bend | acetone C—H |
104 | 1340-1280 | S=O | w | sym. str. | RSO2R' sulfone |
105 | 1340-1180 | C—N | s | str. | azide |
106 | 1320-1210 | C—O | s | str. | carboxylic acid |
107 | 1310-1250 | C—O | s | str. | benzoic ester phthalic ester |
108 | 1300-1200 | N—H | m | def. | secondary amide |
109 | 1300-1250 | SO2 | s | sym. str. | sulfonamide |
110 | 1304-1270 | P=O | s | str. | phos. acid >P—H and P=O |
111 | 1270-1150 | C—O | s | str. | —(O≡)C—O—R in carboxylic esters |
112 | 1256-1232 | C—O | s | str. | CH3COOR acetic ester |
113 | ~1250 | C—O | — | str. | methyl ester |
114 | ~1250 | C—O | — | str. | >C=O |
115 | ~1250 | Si—CH3 | vs | sym. CH3 def. | Si(CH3)3 trimethylsilyl |
116 | 1250-1150 | P=O | vs | str. | phosphoric ester H-bonded P=O |
117 | 1235-1212 | C—S | s | str. | (RO)2C=S thioketone |
118 | 1230-1150 | S=O | s | str. | (RO)2SO2 sulfuric ester |
119 | 1190-1170 | C—H | w | in-plane bend | p-substituted phenyl |
120 | 1125-1090 1110-1060 | — | — | (two) | — |
121 | 1220-1120 | C—N | m | str. | aliphatic amine |
122 | 1200-1145 | S=O | s | str. | OSO2R sulfonic ester |
123 | 1200-1040 | C—O | — | str. | R—O—C—O cyclic acetal (4≥ x ≥ 6) |
124 | 1200-1170 | C—O | s | str. | propionic and higher esters |
125 | 1200-1000 | C—OH | s | str. | alcohols |
126 | 1185-1175 | C—O | s | str. | formic ester |
127 | 1175-1165 and 1110-1140 | C—H | s | skeletal | (CH2)nC≡ isopropyl |
128 | 1175-1125 1110-1070 | C—H | w | in-plane bend | unsubstituted phenyl |
129 | 1070-1000 | — | — | — | — |
130 | 1150-1100 | S—O | s | asym. str. | R2SO2 sulfone |
131 | 1150-1070 | C—O—C | s | asym. str. | benzoic ester phthalic ester |
132 | 1150-1070 | C—O—C | s | asym. str. | aliphatic ether |
133 | ~1120 | C—S | s | str. | —NH—C(=S)— thioamide |
134 | 1110-1000 | P—S | s | str. | monothioro derivs. |
135 | 1090-1030 | P—O—C | vs | str. | phosphoric ester |
136 | 1060-1040 | S=O | s | str. | R2SO dimethylsulfoxyl |
137 | 1058-1053 | C—S | s | str. | (RS)2C=S trithiocarbonate |
138 | 1050-1020 | S=O | s | str. | >S=O sulfoxide |
139 | ~1040 | C—O | s | str. | methylene acetal |
140 | 1005-990 and 910-905 | C—H | vs | bend | C—C—CH2 |
141 | 905-985 and 910-905 | C—H | — | out-of-plane bend | RCH=CH2 |
142 | 980-965 | C—H | — | out-of-plane bend | trans RHC=CHR' |
143 | 975-950 | P—O—P | broad | — | pyrophosphate |
144 | 965-960 and 909-940 | C—H | s | bend | vinyl ether |
145 | 960-930 | N—O | — | str. | oxime |
146 | 950-810 | C—O | — | str. | epoxide |
147 | ~948 | C—H | s | bend | vinyl ester |
148 | ~925 | C—O | — | str. | methylene acetal |
149 | 895-885 | C—H | — | out-of-plane bend | RR'C=CH2 |
150 | ~840 | Si—CH3 | vs | str. | Si(CH3)3 trimethylsilyl |
151 | 840-790 | C—H | — | out-of-plane bend | RR'C=CHR'' |
152 | 840-790 | C—H | m | skeletal | (CH3)2C< isopropyl |
153 | 840-750 | C—O | — | str. | epoxide |
154 | 833-810 | C—H | vs | out-of-plane bend | p-substituted phenyl |
155 | ~800 | NH3+ | w | rocking | amine salt |
156 | ~800 | NH3+ | w | rocking | — |
157 | 770-730 | C—H | s | out-of-plane bend | unsubstituted phenyl |
158 | 710-690 | — | — | — | — |
159 | ~755 | Si—CH3 | vs | str. | Si(CH3)2 trimethylsilyl |
160 | 750-700 | C—Cl | s | str. | monochloro derivs. |
161 | ~720 | N—H | m(broad) | def. | secondary amide bonded: Amide V |
162 | 705-570 | C—S | w | str. | thiol sulfide |
163 | ~690 | C—H | — | out-of-plane bend | cis RHC=CHR' |
164 | ~650 | C—Br | s | str. | bromo derivs. |
165 | 600-480 | C—I | s | str. | iodo derivs. |
166 | 550-450 | S—S | vw | str. | disulfide |
NOMENCLATURE:
Tipson, R. (1968), Infrared spectroscopy of carbohydrates ::a review of the literature, National Institute of Standards and Technology, Gaithersburg, MD, DOI: https://doi.org/10.6028/NBS.MONO.110
Table 1: Comparisons between both experimental and BLYP calculated Infrared frequencies in cm-1 for both α- D-Glucose and β-D-Fructose as well as α- D-Glucose and β-D-Fructose monohydrates.
D-Glucose | D-Fructose | ||||||||
---|---|---|---|---|---|---|---|---|---|
IR | α-D | β-D-M | Assignment | IR | α-D | β-D-M | Assignment | ||
3410 | 3418 | 3146 | ν OH | 3393 | 3428 | 3513 | ν OH | ||
3393 | 3408 | 3123 | ν OH | 2933 | 2975 | 2957 | νs CH of C2 | ||
2944 | 2963 | 3099 | νs CH of C2 | 2899 | 2923 | 2925 | νas CH of C1 | ||
2913 | 2939 | 3085 | νas CH of C1 | 1637 | 1634 | 1665 | δOH | ||
1460 | 1441 | 1465 | δCH2 + δOH + δCCH | 1402 | 1392 | 1417 | δOCH + δ COH + δ CCH | ||
1382 | 1352 | 1390 | δOCH + δ COH + δ CCH | 1340 | 1330 | 1338 | Δ CCH + δ OCH | ||
1340 | 1330 | 1320 | δ CCH + δ OCH | 1265 | 1276 | 1292 | δCH + δOH in plane, δ CCO | ||
1244 | 1218 | 1278 | δCH + δOH in plane | 1203 | 1220 | 1232 | δCH + δOH in plane | ||
1149 | 1137 | 1205 | ν CO + ν CC | 1149 | 1148 | 1166 | ν CO + νCC + δ CCO | ||
1111 | 1116 | 1162 | ν CO | 1057 | 1082 | 1059 | νCO | ||
1050 | 1088 | 1082 | ν CO + ν CC | 977 | 990 | 990 | νCO + δCCO | ||
995 | 944 | 1032 | ν CO + ν CC | 873 | 856 | 908 | δCH + νCC + δCCH | ||
915 | 900 | 993 | ν CO + ν CCH + νas ring of pyranose | 818 | 816 | 884 | δCCO + δCCH | ||
837 | 834 | 909 | δCH | 780 | 784 | 828 | δCCO + δ CCH | ||
622 | 619 | 694 | δ CCO + δ CCH CH2 | 648 | 624 | 658 | CH2 + CH |
NOMENCLATURE:
NOTE:
Reference: Ibrahim, M. A., Allam, M., El-Haes, H., Jalbout, A. F., & De Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Ecletica Quimica, 31(3), 15–21. DOI: https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21
Table 2: FTIR Spectra of Lauric Acid, Dextran, and Dextran-g-Lauric Acid.
Peak (cm⁻¹) | Functional Group | Lauric Acid | Unmodified Dextran | Dextran (Mw 6k, 24h) | Dextran (Mw 6k, 48h) | Dextran (Mw 40k, 24h) |
---|---|---|---|---|---|---|
3365 | –OH Stretching | ✓ | ✓ | |||
2931 | –CH Stretching | ✓ | ✓ | ✓ | ✓ | ✓ |
2851 | –CH Stretching | ✓ | ✓ | ✓ | ✓ | ✓ |
1721 | C=O Stretching | ✓ | ||||
1700 | C=O Stretching | ✓ | ||||
1648 | C=O Stretching | ✓ | ✓ |
NOMENCLATURE:
NOTE:
Reference: Su, C.-M., Lin, C., Huang, C.-Y., Yeh, J.-C., Tsai, T.-Y., Ger, T. R., Wang, M.-C., & Lou, S.-L. (2017). Dextran-g-lauric acid as IKK complex inhibitor carrier. RSC Advances, 7(89), 56247–56255. DOI: https://doi.org/10.1039/c7ra04544a
Table 3: Relocation of Key Maize Starch FTIR Bands After Treatment with Aqueous Na Silicate Solutions.
Native Starch (cm⁻¹) | Starch at Water/Na Silicate Ratio 80 mL/g (cm⁻¹) | 70 mL/g (cm⁻¹) | 60 mL/g (cm⁻¹) | 50 mL/g (cm⁻¹) |
---|---|---|---|---|
524 | 520 | 520 | 514 | – |
578 | 578 | 578 | 570 | 558 |
738 | 700 | 700 | 700 | – |
784 | 765 | 765 | 750 | – |
880 | 880 | 874 | 854 | – |
944 | 941 | 929 | 900 | 900 |
1000 | 996, 1017 (Split) | 996, 1017 (Split) | 996, 1017 (Split) | 1000 |
1090 | 1090 | 1078 | 1078 | 1052 |
1180 | 1175 | 1150 | 1150 | 1121 |
1380 | 1380 | 1376 | 1347 | – |
1450 | 1450 | 1429 | 1381 | – |
1478 | 1476 | 1460 | 1423 | 1448 |
1649 | 1644 | 1642 | 1626 | 1626 |
2948 | 2935 | 2918 | 2918 | 2824 and 2918 |
3430 | 3400 | 3432 | 3432 | 3430 |
NOMENCLATURE:
NOTE:
Reference: Rashid, I., Omari, M. H. A., Leharne, S. A., Chowdhry, B. Z., & Badwan, A. (2012). Starch gelatinization using sodium silicate: FTIR, DSC, XRPD, and NMR studies. Starch - Stärke, 64(9), 713–728. Portico. DOI: https://doi.org/10.1002/star.201100190
Table 4: FTIR Spectra of Pullulan: Characteristic Absorption Bands and Functional Group Assignments
Wavenumber (cm⁻¹) | Vibration Mode | Functional Group/Assignment |
---|---|---|
3400–3200 | O–H stretching | Hydroxyl groups (OH) |
2920–2850 | C–H stretching | Aliphatic C–H bonds |
1640–1630 | O–H bending (adsorbed water) | Water absorbed in the sample |
1450–1400 | C–H bending | CH₂ and CH₃ groups |
1370–1350 | C–H bending | CH₃ groups |
1150–1100 | C–O–C stretching | Glycosidic linkage (C–O–C) |
1070–1030 | C–O stretching | C–O bonds in the sugar ring |
1040, 1020, 996 | Glycosidic linkage vibrations | Specific to pullulan structure |
930–910 | C–O–C stretching | Glycosidic linkage (C–O–C) |
850–840 | C–H bending | Anomeric C–H deformation |
NOMENCLATURE:
NOTE:
Reference:
1. Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and
γ-irradiated pullulan by
Fourier-transform IR spectroscopy. Carbohydrate Research, 337(16), 1445–1451.
DOI:
https://doi.org/10.1016/s0008-6215(02)00209-4
2. Firsov, S. P., Zhbankov, R. G., Petrov, P. T., Shingel, K. I., & Tsarenkov, V. M. (1999).
Analysis of dextran and pullulan molecular fraction structure
by the method of IR-spectroscopy. Spectroscopy of Biological Molecules: New Directions, 323–324.
DOI:
hhttps://doi.org/10.1007/978-94-011-4479-7_144
Table 5: Characteristic IR Bands of Cellulose, sodium carboxymethylcellulose (CMC), carboxymethylcellulose acetate(CMCA), and carboxymethylcellulose acetate butyrate (CMCAB)
Material | Wavenumber (cm⁻¹) | Assignment | Relative Absorbance |
---|---|---|---|
Cellulose | 3482.81 | Strong hydrogen-bonded O-H stretching vibration | 3.59 |
2897.52 | C-H stretching | 1.74 | |
1645.95 | O-H bending from absorbed water | ||
1428.99 | CH₂ bending of pyranose ring | 2.12 | |
1370.18 | C-H bending | 2.56 | |
1034.62 | C-O-C pyranose ring vibration | 2.42 | |
898.66 | β-glycosidic linkage between glucose units in cellulose | 1.08 | |
CMC | 3445.21 | O-H stretching | 1.31 |
2901.38 | Stretching vibration of methine (C-H) | 3.37 | |
1599.66 | C=O group | ||
1414.53 | Anti-symmetric and symmetric stretching vibration peak of COO | 0.99 | |
1369.21 | C-H bending | 0.99 | |
1060.66 | C-O-C stretching | 1.21 | |
CMCA | 3447.13 | Unsubstituted O-H group | 0.68 |
2911.02 | COOH of acetyl group and methyl –CH₃ of CMCA | 1.36 | |
1743.33, 1639.2 | Asymmetric and symmetric C=O coupled stretching | 1.98, 1 | |
1379.82, 1434.38 | Symmetric and asymmetric vibrations of CH₃ | 1.79, 1.65 | |
1434.38 | CH₂ band | 1.65 | |
1245.79, 1037.52, 904.45 | Asymmetric stretching vibrations of C-O-C in ester | 2.03, 2.52, 1.02 | |
CMCAB | 3531.99 | Unsubstituted O-H group | 1.1 |
2966.95 | COOH dimer group and methyl –CH₃ of CMCAB | 0.43 | |
2884.99 | Methylene –CH₂ of CMCAB | 0.03 | |
1748.16, 1640.16 | Asymmetric and symmetric C=O coupled stretching | 2.23, 1 | |
1375 | C-CH₃ of acetyl | 1.22 | |
1240.97, 1168.65, 1064.51 | Asymmetric vibrations of C-O-C to prove the existence of an ester | 1.66, 1.96, 2.36 |
NOMENCLATURE:
CMC: Sodium carboxymethylcellulose
CMCA: Carboxymethylcellulose acetate
CMCAB: Carboxymethylcellulose acetate butyrate
NOTE:
Reference:
El-Sakhawy, M.A., Kamel, S., Salama, A., & Tohamy, H.S. (2018). PREPARATION AND INFRARED STUDY OF
CELLULOSE BASED AMPHIPHILIC MATERIALS. DOI:
http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2018)/p.193-200.pdf